Mathematical Programming Manuscript No. Traveling Salesman Games with the Monge Property ?

نویسنده

  • Yoshio Okamoto
چکیده

Several works indicate the relationship between well-solved combinatorial optimization problems and the core non-emptiness of cooperative games associated with them. In this paper, we consider the core of symmetric traveling salesman games and relate it with well-solved cases of traveling salesman problems. We show that the core of a traveling salesman game in which the distance matrix is a symmetric Monge matrix is non-empty. Also we show that a traveling salesman game in which the distance matrix is a Kalmanson matrix is submodular. Moreover, we show that the problem of testing the core non-emptiness of a given traveling salesman game is NP-hard.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traveling salesman games with the Monge property

Several works have indicated the relationships between polynomially solvable combinatorial optimization problems and the core non-emptiness of cooperative games associated with them, and between intractable combinatorial optimization problems and the hardness of the problem to decide the core non-emptiness of the associated games. In this paper, we study the core of a traveling salesman game, w...

متن کامل

A New Hybrid Parallel Simulated Annealing Algorithm for Travelling Salesman Problem with Multiple Transporters

In today’s competitive transportation systems, passengers search to find traveling agencies that are able to serve them efficiently considering both traveling time and transportation costs. In this paper, we present a new model for the traveling salesman problem with multiple transporters (TSPMT). In the proposed model, which is more applicable than the traditional versions, each city has diffe...

متن کامل

Optimierung Und Kontrolle Projektbereich Diskrete Optimierung on the Tsp with a Relaxed General Distribution Matrix on the Traveling Salesman Problem with a Relaxed Monge Matrix

We show that the traveling salesman problem with a symmetric relaxed Monge matrix as distance matrix is pyramidally solvable and can thus be solved by dynamic programming. Furthermore, we present a polynomial time algorithm that decides whether there exists a renumbering of the cities such that the resulting distance matrix becomes a relaxed Monge matrix.

متن کامل

On the Traveling Salesman Problem with a Relaxed Monge Matrix

We show that the traveling salesman problem with a symmetric relaxed Monge matrix as distance matrix is pyramidally solvable and can thus be solved by dynamic programming. Furthermore, we present a polynomial time algorithm that decides whether there exists a renumbering of the cities such that the resulting distance matrix becomes a relaxed Monge matrix.

متن کامل

On Traveling Salesman Games with Asymmetric Costs

We consider cooperative traveling salesman games with non-negative asymmetric costs satisfying the triangle inequality. We construct a stable cost allocation with budget balance guarantee equal to the Held-Karp integrality gap for the asymmetric traveling salesman problem, using the parsimonious property and a previously unknown connection to linear production games. We also show that our techn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001